Abstract

Prolonged exposure to cannabinoids results in desensitization of cannabinoid receptors. Here, we compared the desensitization produced by the partial agonist, Δ 9-tetrahydrocannabinol (THC) to that produced by the full agonist Win55,212-2 on cannabinoid-mediated inhibition of glutamatergic synaptic transmission. Synaptic activity between rat hippocampal neurons was determined from network-driven increases in the intracellular Ca 2+ concentration ([Ca 2+] i spikes). To assess the effects of prolonged treatment, cultures were incubated with cannabinoids, washed in 0.5% fatty-acid-free bovine serum albumin to ensure the removal of the lipophilic drug and then tested for inhibition of [Ca 2+] i spiking by Win55,212-2. In control experiments, 0.1 μM Win55,212-2 inhibited [Ca 2+] i spiking by 93 ± 5%. Win55,212-2 produced significantly less inhibition of [Ca 2+] i spiking following 18–24 h treatment with 1 μM THC (48 ± 5%) or treatment with 1 μM Win55,212-2 (29 ± 6%). Thus, THC produced significantly less functional desensitization than Win55,212-2. The desensitization produced by THC was maximal at 0.3 μM, remained stable between 1 and 7 days of preincubation and shifted the EC 50 of acute inhibition by Win55,212-2 from 27 to 251 nM. Differences in the long-term effects of cannabinoid receptor agonists on synaptic transmission may prove important for evaluating their therapeutic and abuse potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.