Abstract

The high-speed machining in the manufacturing industry field has been widely applied for parts of vehicles, aircraft, ships, electronics, etc., recently, because the effect of cost savings for shortening processing time and improving productivity is great. The purpose in this study is to investigate the effect of cutting depth on the surface roughness of workpiece with the spindle rotational speed and feed rate of high-speed machines as a parameter to find the optimal depth in the finishing for ball end mill of the aluminum alloy 7075 which is used much in aircraft parts. When the cutting depth for the respective feed rate and spindle rotational speed is varied from 0.1 mm to 0.7 mm at intervals of 0.2 mm in the wet finishing of the aluminum alloy 7075 by the insoluble cutting oils and high-speed machining used in the rough machining of previous study, the surface roughness values and the cutting temperature are measured. In addition, the cutting surface shapes of test specimens are observed by optical microscope and compared with respectively. It is found that the surface roughness values and the temperature generated during machining are increased as the feed rate and cutting depth are raised, but those are decreased as the spindle rotational speed is increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call