Abstract

도로의 안전성을 평가하기 위한 방법으로서 교통사고 자료를 이용하는 방법, 사전-사후평가를 통한 방법 또는 전문가 의견이나 기존 문헌을 통한 방법 등 다양한 방법들이 존재한다. 특히, 교차로 교통 안전성을 평가하는 경우 많은 연구들이 교통사고예측모형 개발을 통하여 교통사고와 관련한 원인과 안전성을 평가하고 있다. 교통사고예측모형 개발에 있어서 모형의 예측력과 전용성을 확보하는 것이 중요하다. 즉, 예측력을 확보함으로써 교통사고 건수나 교통 안전성 판단의 지표를 예측하는데 오차를 줄일 수 있고, 전용성을 확보함으로써 개발된 모형이 다른 지점이나 구간에 적용하더라도 문제없이 적용될 수 있는 대표성을 가질 수 있다. 따라서 본 연구에서는 교통사고예측모형 개발에 주로 사용되는 회귀모형과 인공신경망, 구조방정식을 이용하여 교통사고예측모형을 각각 개발하였으며, 개발될 모형의 예측력과 전용성을 평균절대오차와 평균제곱예측오차를 기준으로 확인하였다. 90개소 신호교차로의 모형개발자료를 이용하여 세 가지 방법으로 교통사고예측모형을 개발 후 개발데이터를 통해 예측력을 비교한 결과 인공신경망이 가장 높은 예측력을 보였다. 또한 모형의 전용성 검증을 위하여 별도로 수집한 33개소 신호교차로의 모형검증자료를 이용하여 개발된 모형을 검증한 결과 비선형 회귀모형이 가장 적합한 것으로 나타났다. 모형개발 과정에서 가장 높은 예측력을 보인 인공신경망의 경우 다른 대상지에서 수집된 모형검증 자료를 적용하였을 때 예측력에 큰 변화를 보여 전용성이 떨어진 것으로 분석되었다. For the evaluation of roadway safety, diverse methods, including before-after studies, simple comparison using historic traffic accident data, methods based on experts' opinion or literature, have been applied. Especially, many research efforts have developed traffic accident prediction models in order to identify critical elements causing accidents and evaluate the level of safety. A traffic accident prediction model must secure predictability and transferability. By acquiring the predictability, the model can increase the accuracy in predicting the frequency of accidents qualitatively and quantitatively. By guaranteeing the transferability, the model can be used for other locations with acceptable accuracy. To this end, traffic accident prediction models using non-linear regression, artificial neural network, and structural equation were developed in this study. The predictability and transferability of three models were compared using a model development data set collected from 90 signalized intersections and a model validation data set from other 33 signalized intersections based on mean absolute deviation and mean squared prediction error. As a result of the comparison using the model development data set, the artificial neural network showed the highest predictability. However, the non-linear regression model was found out to be most appropriate in the comparison using the model validation data set. Conclusively, the artificial neural network has a strong ability in representing the relationship between the frequency of traffic accidents and traffic and road design elements. However, the predictability of the artificial neural network significantly decreased when the artificial neural network was applied to a new data which was not used in the model developing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.