Abstract

This paper proposes a control algorithm for quadruped robots moving on irregularly sloped uneven surfaces. Since the body balance of a quadruped robot is controlled by the forces acting on its feet during touchdown, the ground reaction force (GRF) is controlled for stable running. The desired GRF for each foot is generated on the basis of the desired galloping pattern; this GRF is then compared with the actual contact force. The difference between the two forces is used to modify the foot trajectory. The desired force is realized by considering a combination of the rate change of the angular and linear momenta at flight. Then, the amplitude of the GRF to be applied at each foot in order to achieve the desired linear and angular momenta is determined by fuzzy logic. Dynamic simulations of galloping motion were performed using RecurDyn; these simulations show that the proposed control method can be used to achieve stable galloping for a quadruped robot on irregularly sloped uneven surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.