Abstract

To identify optimized thermal properties of mold brassiere cup for improved thermal comfort during summer, we compared the thermal resistance and the water vapor permeability of Polyurethane (PU) foam, 3D spacer fabric and the two combined materials of the PU foam and the 3D spacer fabric. Four experimental mold brassieres were made of the materials for wearing test. Six women in their twenties evaluated the wearing sensation in the hot and humid environment. The changes in microclimate temperature and humidity while wearing test brassiere cups were measured. Results indicate that thermal resistance increased as more PU foam were combined, while the water vapor permeability was higher as the content of the 3D spacer fabric increased at thickness of 18mm and over. However, in the wear test, the PU foam brassiere was the most preferred in all ambient conditions due to its soft, flexible and smooth texture, despite its high thermal resistance and low water vapor permeability. This indicates that the textures of mold foams are more dominant properties than thermal properties for mold foams in determining the wear comfort of mold brassieres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.