Abstract
올바른 피부색 검출은 사람의 얼굴 검출 및 동작 분석에서 매우 중요한 전처리과정에 속한다. 피부 검출은 일반적으로 화소의 칼라 공간을 Non-RGB로 변형하고, 피부색의 조명 요소를 제거한 다음 피부색 분포 모델에 의해 Skin과 Non-Skin으로 분류하는 3단계로 진행된다. 이는 피부색 검출이 칼라 공간, 조명 요소의 존재 여부, 피부 모델링 방법에 따라 수행 성능에 많은 영향을 받기 때문이다. 본 연구에서는 조명 조건에 따라 피부색 모델의 범위에 차이가 있다는 사실에 기초하여 다양한 조명 조건과 복잡한 배경을 가진 영상에서 효과적으로 다인종의 피부색을 분류해내 기 위한 3차원 피부색 모델을 제시하고자 한다. 제안된 피부색 모델은 화소의 칼라 공간을 YCbCr공간으로 변형하고, 각 요소(Y, Cb, Cr) 값에 의한 3차원 피부색 모델을 형성한다. 다인종의 피부색을 함께 분할하기 위해 인종(백인, 흑인, 황인)별 피부색 모델을 먼저 생성한 후 각각의 모델에서 피부색 확률에 따라 결합한 다인종을 위한 통합 모델을 생성하였다. 또한 우리는 적은 양의 훈련 데이터로 피부색 영역을 올바르게 검출할 수 있도록 여러 단계의 피부색 영역을 설정하였다. The correct detection of skin color is an important preliminary process in fields of face detection and human motion analysis. It is generally performed by three steps: transforming the pixel color to a non-RGB color space, dropping the illuminance component of skin color, and classifying the pixels by the skin color distribution model. Skin detection depends on by various factors such as color space, presence of the illumination, skin modeling method. In this paper we propose a 3d skin color model that can segment pixels with several ethnic skin color from images with various illumination condition and complicated backgrounds. This proposed skin color model are formed with each components(Y, Cb, Cr) which transform pixel color to YCbCr color space. In order to segment the skin color of several ethnic groups together, we first create the skin color model of each ethnic group, and then merge the skin color model using its skin color probability. Further, proposed model makes several steps of skin color areas that can help to classify proper skin color areas using small training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.