Abstract

This paper proposes an efficient hardware architecture to estimate disparities between 2D images for generating 3D depth images in a stereo vision system. Stereo matching methods are classified into global and local methods. The local matching method uses the cost functions based on pixel windows such as SAD(sum of absolute difference), SSD(sum of squared difference) and NCC(normalized cross correlation). The NCC-based cost function is less susceptible to differences in noise and lighting condition between left and right images than the subtraction-based functions such as SAD and SSD, and for this reason, the NCC is preferred to the other functions. However, software-based implementations are not adequate for the NCC-based real-time stereo matching, due to its numerous complex operations. Therefore, we propose a fast pipelined hardware architecture suitable for real-time operations of the NCC function. By adopting a block-based box-filtering scheme to perform NCC operations in parallel, the proposed architecture improves processing speed compared with the previous researches. In this architecture, it takes almost the same number of cycles to process all the pixels, irrespective of the window size. Also, the simulation results show that its disparity estimation has low error rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.