Abstract

This paper proposes a photogrammetric rectification method based on Bayesian approach as a method that eliminates vertical parallax between stereo images to minimize visual fatigue of 3D contents. The image rectification consists of two phases; geometry estimation and epipolar transformation. For geometry estimation, coplanarity-based relative orientation algorithm was used in this paper. To ensure robustness for mismatch and localization error occurred by automation of tie point extraction, Bayesian approach was applied by introducing several prior constraints. As epipolar transformation perspective transformation was used based on condition of collinearity to minimize distortion of result images and modification for input images. Other algorithms were compared to evaluate performance. For geometry estimation, traditional relative orientation algorithm, 8-points algorithm and stereo calibration algorithm were employed. For epipolar transformation, Hartley algorithm and Bouguet algorithm were employed. The evaluation results showed that the proposed algorithm produced results with high accuracy, robustness about error sources and minimum image modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.