Abstract
2020 was the year of introduction of the Ukrainian new generation radio telescope RT-32 into the experimental operation. The test results of maser hydrogen and hydroxyl lines obtained during the experimental operation confirmed the correctness of the calculations and technological solutions of Ukrainian scientists and manufacturers Consortium. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to radio astronomical sources. One of the further development directions of RT-32 as a radio astronomical research tool is to increase the accuracy of pointing the radio telescope to astronomical radio sources. The latter is to be achieved by automating the processes of guidance error matrices formation and their integration during the observations. The formation of such a matrix presupposes taking into account the structural features of the antenna system and weather condition. The paper presents the results of geodetic measurements of the antenna system surface on different elevation angle, construction of the 3D model of the reflector. The method of constructing the error matrix, which at this stage of research provides the necessary simplicity of perception and interpretation of the obtained results by the human operator, is proposed. The results of the developed method verification using reference radio sources are given and the error matrices of elevation and azimuth pointing (dimension 81x81 elements) obtained with the use of said method are presented. The introduction of the results presented in the article into the radio telescope control system allowed increasing the accuracy of RT-32 radio telescope pointing in the C- and K- bands to the value of ~36″. This work partially was supported by Latvian Council of Science project "Joint Latvian-Ukrainian study of peculiar radio galaxy “Perseus A” in radio and optical bands. Nr: lzp-2020/2-0121".
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.