Abstract
본 논문에서는 얼굴을 인식하기 위한 쌍대각 2차원 LDA를 제안하였다. 기존의 Dia2DPCA와 Dia2DLDA가 대각 방향 영상들의 행 변화량과 열 변화량 사이의 상관을 제한하기 위하여 제안되어지고 있다. 그러나 이러한 방법들은 영상들의 행방향으로 동작한다. 제한 방법에 있어서 행방향의 투영 행렬은 기존 방법과 전혀 다르게 대각 방향 얼굴 영상들의 열 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 그리고 열방향의 투영 행렬은 대각방향 얼굴 영상들의 행 변화량을 고려한 클래스 간의 공분산 행렬과 클래스 내의 공분산 행렬을 이용함으로써 얻어진다. 좌우 양측의 투영 방법은 투영 행렬들을 좌우로 곱함으로써 적용된다. 그 결과로 특징 행렬의 차원과 계산 시간이 감소된다. ORL 얼굴 데이터베이스에서 수행된 실험들은 Frobenius, Yang, AMD와 같은 3가지 거리 척도를 사용하여 2DPCA, B2DPCA, 2DLDA 등과 같은 다른 얼굴 인식 방법들보다 제안된 방법의 인식률이 높음을 보여준다. In this paper, a method called bilateral diagonal 2DLDA is proposed for face recognition. Two methods called Dia2DPCA and Dia2DLDA were suggested to reserve the correlations between the variations in the rows and columns of diagonal images. However, these methods work in the row direction of these images. A row-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the column variation of alternative diagonal face images. In addition, column-directional projection matrix can be obtained by calculating the between-class and within-class covariance matrices making an allowance for the row variation in diagonal images. A bilateral projection scheme was applied using left and right multiplying projection matrices. As a result, the dimension of the feature matrix and computation time can be reduced. Experiments carried out on an ORL face database show that the proposed method with three different distance measures, namely, Frobenius, Yang and AMD, is more accurate than some methods, such as 2DPCA, B2DPCA, 2DLDA, etc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.