Abstract

Here we demonstrate G-quadruplex formation by oligodeoxynucleotides containing α-2'-deoxyguanosine (α-dG) as a sole source of guanosines in G4T4, G4T4G4 and T(G3Tn)3G3T sequences with various numbers of natural β-T in the loops (n = 1-4). Based on circular dichroism spectra we observed that all α-dG-containing DNAs formed G-quadruplexes with uniform arrangement of α-dG-tetrads, which implies formation of G-quadruplexes of parallel topology. In several cases, native DNA structures that usually adopt an antiparallel topology were converted to more thermally stable G-quadruplexes of parallel topology. Using 2D ROESY NMR spectra a new 'sequential walk' was established for α-dGs in a tetramolecular, parallel complex formed by the α-G4β-T4 sequence. Analysis of ROEs in α-dGs indicates that guanines in [α-G4β-T4]4 adopt anti-glycosidic conformations. These results demonstrate that α-dG can be used for an antiparallel-to-parallel switch of G-quadruplex DNAs producing complexes with higher thermal stability and uniform stacking of α-dG-tetrads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.