Abstract

This study is concerned with the problem of ℋ2 state-feedback control design for discrete-time Markov jump linear systems (MJLS), assuming that the transition probability matrix is not precisely known, but belongs to a polytopic domain, or contains unknown or bounded elements. As a first contribution, the uncertainties of the transition probability matrix are modelled in terms of the Cartesian product of simplexes, called multi-simplex. Thanks to this representation, the problem of robust mean square stability analysis with an ℋ2 norm bound can be solved through convergent linear matrix inequality (LMI) relaxations constructed in terms of polynomial solutions. The proposed conditions yield a better trade-off between precision and computational effort when compared with other methods. As a second contribution, new conditions in terms of LMIs with a scalar parameter lying in the interval (− 1, 1) are proposed for ℋ2 state-feedback control with complete, partial or no observation of the Markov chain. Owing to the presence of the scalar parameter, less conservative results when compared with other conditions available in the literature can be obtained, at the price of increasing the associated computational effort. Numerical examples illustrate the advantages of the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.