Abstract

This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call