Abstract

The results of the development of a new alloy of the Al – Mg – Si system of the 6xxx series, which received the V-1381 grade, are presented. The influence of the composition and modes of heat treatment on the mechanical and corrosion properties of sheets with a thickness of 1,0 and 3,0 mm, manufactured under the conditions of FSUE “VIAM”, was investigated. Average level of sheet properties: UTS = 410 MPa, YTS = 360 MPa, El = 11.5 %; fatigue crack growth (dl/dN) = 0,59 mm/kcycle at ΔK = 18,6 MPa·m1/2, intergranular corrosion ≤ 0,15 mm, exfoliation corrosion 4 points. It was found that the structure of the sheets is recrystallized, the main strengthening phase is the coherent matrix β’(Mg2Si)-phase evenly distributed in the volume of grains with a high density. There is also a heterogeneous origin of β′-phase on dislocations and dispersoids. At grain boundaries there are zones free from emissions with a width of 15 – 20 nm. Dispersoids of various morphologies are observed in the tested samples. Temperature and heat values of phase transformations in ingots and sheets are determined and established liquidus and solidus points. The sheet weldability was evaluated by automatic argon-arc welding and the critical rate of deformation of the weld metal during crystallization was determined, at which no cracks were formed in it. Laser welding mode has been developed to ensure optimal formation of geometric parameters of the weld.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call