Abstract
The effect of severe plastic deformation by high pressure torsion (HPT) on the structure of AK12MMgN-18%SiCp composite alloy was investigated. A liquid-forged billet was taken as an initial material. Samples 8 mm in diameter and 0.45 mm in thickness were deformed by torsion in a Bridgman anvil at room temperature up to 5 turns under the pressure of 4 GPa. After deformation the samples were annealed in the temperature range of 300-500°C for 5 minutes. The average area and volume fraction of particles in the initial, HPT-processed and annealed samples were evaluated. The change of the concentration level of a solid solution in the states under study was analyzed. It was shown that HPT led to a fragmentation of particles and a reduction of their average area: silicon particles from 4.4±0.1 to 0.32±0.02 μm2, intermetallic particles from 5.2±2.6 to 0.20±0.02 μm2, and SiC from 37.6±0.9 to 3.9±0.02 μm2. At the same time, a partial dissolution of excess phases occurred that resulted in the formation of a supersaturated solid solution. Post-HPT annealing led to a dissolution of the supersaturated solid solution with a separation of secondary phases of different morphology not typical to the alloy: globular silicon, rod shaped phase enriched by Ni, Si and Fe and a more compact phase containing Si and Cu. The higher the annealing temperature, the more intensive was the process of supersaturated solid solution decomposition and the higher was the volume fraction of silicon and intermetallic particles. Their average area increased with annealing temperature. No changes in the average area and volume fraction of SiC particles during annealings of HPT-processed alloy were observed.
Highlights
The effect of severe plastic deformation by high pressure torsion (HPT) on the structure of AK12MMgN-18 %SiCp composite alloy was investigated
A liquid-forged billet was taken as an initial material
0.45 mm in thickness were deformed by torsion in a Bridgman anvil
Summary
Методы интенсивной пластической деформации (ИПД) активно используются для формирования ультрамелкозернистой и нанокристаллической структур в алюминиевых сплавах и композициях на их основе, что приводит к существенному изменению их физических и механических свойств [1 – 3]. Одновременно со структурным изменением матрицы сплавов, в процессе деформации может происходить изменение их фазового состава, которое обусловлено ускоренным распадом пересыщенного твердого раствора [4 – 7] и др., либо растворением частиц вторых фаз, в том числе и алюминидов переходных металлов (ПМ) [8 – 12]. При отжиге деформированных алюминиевых сплавов наряду с возвратом и рекристаллизацией, в термоупрочняемых сплавах могут протекать процессы распада твердого раствора. Авторы работы [15] показали, что ИПД, реализованное кручением под высоким давлением, и последующий отжиг при 350°С в течение 1 часа алюминиевого сплава 2024 (Al-Cu-Mg) привели к выделению из пересыщенного твердого раствора совокупности частиц вторичных фаз Al3Fe, Al6Mn, Al2Cu и Al2CuMg, хотя при традиционной термообработке для сплавов системы Al-Cu-Mg типичными считаются Al2Cu и / или Al2CuMg [18]. Целью настоящей работы являлась оценка влияния ИПД, реализованной кручением под высоким давлением (КВД), и отжига на фазовый состав композиционного сплава АК12ММгН / 18 %SiCp
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.