Abstract
Penetrations of bead-on specimens (200×200 mm, 6, 10, 15 and 20 mm thick) of plain carbon steel were measured for, various welding conditions. (see Fig. 1 and Table 1).Penetration and bead width were presumed by theoretical calculation of temperature distribution near the weld. (see Fig. 2). These are shown-in Figs. 3, 4 and 5, where Q: heat input per unit time (cal/sec), λ: thermal conductivity (cal/cm.sec°C), k: temperature diffusivity (cm2/sec), θ1: melting temperuture (°C), W: width of'heat source (cm). From this calculation, penetration (d) and bead width (b) are expressed by equations (3) and (4). Constants m1, m2, n1, n2 and K are given in Table 3 for the typical electrode "A" in Japan. The change of arc length (or arc voltage) little affect the penetration as shown in Fig.7. The effect of welding current (I amp.) and welding speed (v cm/sec) on penetration is shown in Figs. 8 and 9 respectively. The effect of electrode size is shown in Fig. 10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.