Abstract
In the present study we have investigated functional roles for β 1 integrin receptors in regulating axon outgrowth, and glial cell adhesion and spreading in the Xenopus retina. The XR1 glial cell line, isolated from Xenopus retinal neuroepithelium, deposits a proteinaceous extracellular matrix (ECM) with potent neurite outgrowth promoting activity. To investigate a potential role of the integrins as cellular receptors for these glial cell-derived ECM components, embryonic and regenerating retinal explants were cultured in the presence of polyclonal antibodies directed against the β 1 integrin receptor complex. The IgGs and Fabs of the anti-β 1 integrin antibody strongly inhibited ganglion cell axon outgrowth on the glial cell-derived ECM, although axons grew freely across the surfaces of glial cells surrounding the explants. The antibodies also inhibited outgrowth on purified laminin containing substrates in a dose-dependent fashion. In addition, the anti-β 1 antibodies were effective at inhibiting the spreading of glial cells that migrated out from the embryonic explants, and also inhibited attachment and spreading of Xenopus XR1 glial cells on ECM substrates. These results show that the β 1 integrins play important functional roles in axon outgrowth during development and regeneration, and also serve in regulating retinal glial cell attachment and spreading in vitro, and thus are likely to play similar roles in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.