Abstract

The chimeric herpes simplex viruses (HSV) are Δγ₁34.5 vectors encoding the human cytomegalovirus (HCMV) IRS1 or TRS1 genes. They are capable of late viral protein synthesis and are superior to Δγ₁34.5 HSVs in oncolytic activity. The interferon (IFN) response limits efficient HSV gene expression and replication. HCMV TRS1 and IRS1 restore one γ₁34.5 gene function: evasion of IFN-inducible protein kinase R, allowing late viral protein synthesis. Here we show that, unlike wild-type HSV, the chimeric HSV do not restore another γ₁34.5 function, the suppression of early IFN signaling mediated by IFN regulatory factor 3 (IRF3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.