Abstract

Plasmodesmata (Pd), coaxial membranous channels that connect adjacent plant cells, are not static, but show a dynamic nature and can be opened or closed. These controlled changes in Pd conductivity regulate plant symplasmic permeability and play a role both in development and defense processes. One of the mechanisms shown to produce these changes is the deposition and hydrolysis of callose by β-1-3-synthase and glucanase, respectively. Recently we have identified the first β-1,3-glucanase Arabidopsis enzyme that is associated to the macromolecular Pd complex, termed AtBG_pap. When fused to GFP, this previously identified GPI-anchored protein localizes to the ER and the plasma membrane where it appears in a punctuate pattern that co-localizes with callose present around Pd. In T-DNA insertion mutants that do not transcribe AtBG_pap, GFP cell-to-cell movement between epidermal cells is reduced and callose levels around Pd are elevated. In this addenda we review the plant developmental processes of symplasmic regulation that have been shown to include callose deposition and β-1,3-glucanase activity, and suggest a role for AtBG_pap in these processes. Additionally, based on the ability of viral movement proteins (MPs) to interact with ankyrin repeat proteins, and together with our recent findings showing the involvement of viral particles in callose degradation, we also purpose a new model for the ability of viruses to overcome Pd-callose deposition, and mediate their cell-to-cell movement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.