Abstract

Magnetotransport measurements on two-dimensional electrons confined to wide GaAs quantum wells reveal a remarkable evolution of the ground state at filling factor $\nu=1/2$ as we tilt the sample in the magnetic field. Starting with a compressible state at zero tilt angle, a strong $\nu=1/2$ fractional quantum Hall state appears at intermediate angles. At higher angles an insulating phase surrounds this state and eventually engulfs it at the highest angles. This evolution occurs because the parallel component of the field renders the charge distribution increasingly bilayer-like.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call