Abstract

An analytical method for calculating the parameters of the electroneutral vacancies formation and self-diffusion of atoms in a single-component crystal is proposed. The method is based on the 4-parameters pairwise Mie–Lennard-Jones interatomic interaction potential. The method allows calculating all the activation processes parameters: Gibbs energy, enthalpy, entropy and volume for both the vacancy formation process and the self-diffusion process. The method is applicable at any pressure (P) and temperature (T). The temperature dependencies of the activation processes parameters for gold are calculated from T = 10 K to 1330 K along two isobars P = 0 and 24 GPa. It is shown that at low temperatures, due to quantum regularities, activation parameters strongly depend on temperature, and the entropy of activation processes in this region has a negative value. In the high temperature region, the probability of vacancy formation and the self-diffusion coefficient pass into classical Arrhenius dependencies with a weakly temperature-dependent enthalpy and with a positive value of the activation process entropy. Good agreements were obtained with the estimates of activation parameters for gold known from the literature. The values of activation parameters at T = 0 K were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.