Abstract
The technique of processing the test results to the destruction of samples cut from slings and dome fabric after prolonged use or storage of the parachute is described. The normal law of load distribution before failure is adopted.It is proposed to find the minimum breaking load as the lower confidence limit depending on the number of tested samples and a confidence probability of 0.99.The results of strength tests of samples from the parachutes of the landing D-5 series 2 of 1983, the spare Z-5 of 1984, and the rescue S-5K series 2 of 1989 are presented.A total of 301 samples were tested, including 54 samples from slings D-5, 48 samples from slings Z-5 and S-5K, samples from fabrics of domes on the base and weft. Samples from slings were cut out at the edge of the dome, in the middle, at the arc buckles.Fabric samples were cut radially from the top to the edge of the dome. The dependence of the strength characteristics on the location of the samples along the length of the slings or the dome panel has not been established.There are no gross errors in the tests according to the Grubbs criterion.The strength degradation coefficients of the slings and fabrics of the domes are determined as the ratio of the breaking load after long-term operation or storage to the initial values adopted during the design.The proximity of the degradation coefficients of slings and dome fabrics was noted. Based on the set of test results in order to obtain the minimum values of the degradation coefficients, a linear dependence on the life of the parachute is established.This period should be counted from the year the parachute was made.The dependence of the minimum degradation coefficients (maximum degradation) on the service life makes it possible to assess the drop in the strength characteristics of the structural elements with increasing service life. This dependence allows you to predict the maximum allowable landing speed when deciding on the extension of the life of the parachute.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.