Abstract

We present results of modeling of the effect of internal gravity waves (IGW), excited in the region of development of a sudden stratospheric warming (SSW), on upper atmospheric conditions. In the numerical experiment, we use a two-dimensional model of propagation of atmospheric waves, taking into account dissipative and nonlinear processes accompanying wave propagation. As a source of disturbances we consider temperature and density disturbances in the stratosphere during SSWs. Amplitude and frequency characteristics of the source of disturbances are estimated from observations and IGW theory. Numerical calculations showed that waves generated at stratospheric heights during SSW can cause temperature changes in the upper atmosphere. Maximum relative disturbances, generated by such waves, with respect to quiet conditions are observed at 100–200 km. Disturbances of the upper atmosphere in turn have an effect on dynamics of a charged component in the ionosphere and can contribute to observable ionospheric effects of SSW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call