Abstract

Cosmic ray is composed of nuclear particles moving at a light speed. The cosmic ray affects the performance and the reliability of semiconductor devices by ionizing the semiconductor material. In this study, the radiation effects of protons, electrons, and photons, which compose the cosmic ray, on the GOS(Geostationary Orbit Satellite) were evaluated using the Monte-Carlo N-Particle code. The GOS was chosen due to the comparatively long exposure to the cosmic ray as it stays in the geostationary orbit more than 10 years. As the absorbed dose of semiconductor from electrons is much larger than those of protons, photons, and the secondary radiation, most of the radiation exposure of the semiconductors in the GOS results from that of electrons. When we compare the calculated absorbed dose with the radio-resistance of semiconductor, the Intel 486 of the Intel company is not suitable for the GOS applications due to its low radio-resistance. However RH3000-20 of MIPS and Motorola 602/603e can be applied to the Satellite when the aluminium shield is thicker than 3 mm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call