Abstract
Simulation of transient and steady state modes of synchronous motors for the analysis of switching to backup power using mathematical model. Method. The methods of linear algebra, numerical optimization methods, methods of modeling and analysis of established and transient modes are used. Results. The mathematical model of the salient pole rotor and non-salient or cylindrical pole rotor synchronous motor is presented, which is presented in the form of a alternate scheme, which allows to take into account the effect of displacement of current and saturation of the non-salient pole rotor motor's magnetic core. A method for determining the parameters of the synchronous motor based on passport data is proposed, which allows to improve the accuracy of modeling in steady state and transient modes. The mathematical model is reduced to a three-phase coordinate system a, b, c of the stator winding. The rotor windings are modeled in the coordinates d, q. The results of mathematical modeling allow us to determine the magnitude of the shock currents and mechanical moments of the synchronous motor. It is shown that non-synchronous switching on of the synchronous motor, which occurs in case of automatic transfer switch, can lead to engine damage. Shock currents can also be dangerous to other power supply equipment. Thus, synchronous motors, if transfer switch is used, require synchronization before being connected to the network. Scientific novelty. The mathematical model of the synchronous motor was improved taking into account the displacement of current and saturation of the magnetic conduit, the method of determining the parameters of the mathematical model based on the passport data of the engine was improved, which allowed to increase the accuracy of the simulation and the reliability of the simulation results. The modes of power transfer switch are simulated and the values of shock current and shock mechanical moment of the engine are obtained. Practical meaning. The mathematical model of the synchronous motor allows to analyze the behavior of synchronous motors in interaction in the power supply system and to identify the dangerous states of synchronous motors that may occur during the transfer switching. The proposed model improves the accuracy of determination of the limits of dangerous states and improves the reliability of synchronous motors and power supply systems
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.