Abstract

To reduce production costs in the design and creation of an inductive-conductive heater (ICH), it is necessary to carry out a preliminary calculation as accurately as possible. This is possible when using the most approximate electrical circuit for replacing the ICH to a real object. It becomes possible to assess the work of the ICH in various operating conditions, including emergency conditions, using simpler modeling. An inductive-conductive heater transformertype is a three-rod W-shaped magnetic circuit with primary windings, which are covered by a heat exchanger (HE) of three concentric systems of electrically conductive cylinders with an internal slotted channel for the coolant. The energy from the mains supply is inductively transferred to the heat exchanger through the air gap by means of the primary winding. The secondary circuit of an electromagnetic device is a heat exchanger in which electrical energy is converted into heat. The heat flux from the heated cylindrical walls of the HE conductively heats the coolant circulating in the system to the required temperature. The large surface area of the HE allows you to avoid its overheating in relation to the coolant, which has a positive effect during the operation of the ICH in heating and hot water supply systems, significantly reducing the deposition of water impurities on the walls of the HE. The service life of the device is increased to 100 thousand hours or more. In the work, the synthesis of elements of the ICH equivalent circuit is carried out and the results of calculating the characteristics of the stationary mode of a number of products are presented. The equivalent circuit allows you to simulate electromagnetic processes in devices of different power, voltage and industrial frequencies in the range of 50…1000 Hz. If the configuration of the heating chamber (secondary circuit) is changed, the parameters of the elements of the equivalent circuit are adjusted without changing the general construction algorithm. For new products of inductive-conductive heating, there are no bibliographic data for calculating the elements of the equivalent circuit, especially regarding the formation of the replacement circuit of the secondary circuit, determined by the design of the heating chamber. To fill this gap, the authors have done this work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call