Abstract

Ribosomes, the macromolecular translating machines responsible for protein biosynthesis, are the most common targets for many antibacterial agents. Experiments for more than 40 years have demonstrated that a distinct ionic environment (monovalent, divalent cations and polyamines) is essential for ribosomal functions and their interactions with the ligands. Nevertheless, the molecular basis of the ionic environment’s influence on antibiotic mechanism of action has never been precisely elucidated. The aim of this thesis was first to investigate the mechanism of action of several antibiotics –inhibitors of protein synthesis, under ionic conditions close to the cell environment and second, to clarify the role of the ionic environment on their mechanism of action. The antibiotics studied were: a) blasticidin-S, a classic inhibitor of peptidyl tranferase (PTase) activity, b) tylosin which inhibits PTase, but in parallel binds at the entrance of exit tunnel and blocks the passage of the nascent polypeptide chain, and c) erythromycin (a first generation macrolide), azithromycin (a second generation macrolide), and telithromycin (a third generation macrolide, ketolide), that blocks the exit tunnel. The mechanism of action of antibiotics and the influence of ionic environment on antibiotic potency was studied primarily with kinetic methods. The experimental procedure was based on the puromycin reaction, performed under conditions allowing the estimation of the catalytic rate constant. Using this experimental approach we studied the mechanism of action of blasticidin and tylosin which directly inhibit PTase. For studying the other macrolides, experiments employing competitive kinetics were performed. Erythromycin, azithromycin and telithromycin share common binding sites on ribosomes with tylosin. Thus, to estimate the kinetic constants of their interactions with ribosomes, competitive kinetic experiments were carried out in the presence of tylosin. Namely, a posttranslocation ribosomal complex formed from Escherichia coli 70S ribosomes bearing tRNAPhe at the E-site and AcPhe-tRNA at the P-site (complex-C) was incubated with a mixture of each macrolide and tylosin for the desired time intervals. The rest of ribosomal activity was titrated by the puromycin reaction. In parallel experiments, complex-C was pre-incubated with each one of the macrolides and then reacted with tylosin. The rest of complex-C activity was again titrated with the puromycin reaction. Since the affinity constant obtained by the second series of experiments was less than that obtained by the first series of experiments, we concluded that the mechanism of action of antibiotics follows a slow onset inhibition process, which includes two steps. Based on secondary plots and on kinetic plots derived from regeneration of complex-C, we measured the kinetic parameters participating in the kinetic model. Thus, the potency of each antibiotic was determined under five different ionic conditions: (a) 4,5 mM Mg2+, 150 mM NH4+, (b) 4,5 mM Mg2+, 150 mM NH4+, 100 μΜ spermine, (c) 4,5 mM Mg2+, 150 mM NH4+, 50 μΜ spermine and 2 mM spermidine, (d) 4,5 mM Mg2+, 150 mM NH4+, and ribosomal complex photolabelled with 100μΜ ΑΒΑ-spermine, and (e) 10 mM Mg2+, 100 mM NH4+. Processing of the data led us to the conclusion that polyamines and Mg2+ ions increase the potency of blasticidin, but decrease the potency of macrolides. To explain the diverse action of polyamines and of the ionic environment in general on antibiotic potency, the binding sites of spermine in ribosomes were localized by photoaffinity labeling, using a photoactive analogue of spermine, ABA-spermine. These experiments revealed that polyamines bind at the vicinity of antibiotics, influencing the ionic charge and the local conformation of rRNA. Confirmation of the macrolide mechanism of action and verification of the influence of polyamines on their potency was achieved by footprinting analysis. According to this technique, macrolides bind to ribosomes and protect specific nucleotides from modification by chemical reagents like DMS, CMCT and kethoxal. The results demonstrated that the antibiotics (I) form an encounter complex with complex-C (CI), in which the antibiotics occupy the entrance of the exit tunnel. This intermediate complex is then isomerized slowly to a tighter complex (C*I) with which antibiotics move deeply in the exit tunnel. The exact interactions stabilizing the intermediate complex depend on the characteristic groups of each macrolide. The influence of polyamines was checked by repeating the experiment in the presence of polyamines. The results showed that polyamines reduce the macrolide binding to ribosomes, by affecting mainly the interactions of the hydrophobic lactone ring with the ribosome. The special characteristic groups of each macrolide affect the polyamine action. The potency of macrolides action was also estimated using a coupled transcription-translation system for GFP expression. The results obtained were consistent with those produced by kinetic analysis. In addition, we check for possible macrolide effects on tRNA binding at the A-, P- and E- sites of the ribosome, on translocation, and on translational fidelity. No strong effects were identified excluding the macrolide from these ribosomal functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.