Abstract
The article covers the problem of studying thermal processes in rotating by inertia in the absence of gravity capillary viscous fluid ring with free boundaries that are acted by pressure of gas medium. System under consideration depending on the initial angular velocity, initial radial perturbation and geometry is able to be in different move modes. It is shown that for case of periodic damped motion the absolute value of the dissipative losses it is a continuous function with areas with periodic changes. In a series of numerical experts, which was subjected to a viscosity change was observed the effect of zeroing the dissipative losses at a certain viscosity value. This effect is due to the fact that amplitude of oscillations of the liquid ring sizes is practically zeroed at a certain, critical value of the viscosity and the ring begins to rotate like a solid. Moreover, change of ring size amplitude significantly different from zero in case of the viscosity is not equal to the critical with the same level of the radial component perturbation of the velocity and the constancy of the other parameters of the system. The formula for calculating the critical viscosity values for the case of a damped periodic motion of the liquid ring is obtained.Received 11.07.2016; accepted 09.08.2016
Highlights
В работе рассматривается задача изучения тепловых процессов во вращающемся по инерции, при отсутствии сил тяжести, кольце вязкой капиллярной жидкости со свободными границами, на которые действую силы давления газовой среды
The article covers the problem of studying thermal processes in rotating by inertia in the absence of gravity capillary viscous fluid ring with free boundaries that are acted by pressure of gas medium
System under consideration depending on the initial angular velocity, initial radial perturbation and geometry is able to be in different move modes
Summary
В данной работе рассматривается задача изучения тепловых процессов во вращающемся по инерции кольце вязкой капиллярной жидкости со свободными границами в отсутствие силы тяжести при наличии начального радиального возмущения. Изучению закономерностей изменения поля скоростей подобной системы аналитическими методами были посвящены работы В. О. Бытева [1], В. В. Пухначева [2], О. М. Лаврентьевой [3,4]. Целью данной работы является анализ результатов численного моделирования решения сквозной задачи об отыскании полей распределения скорости и температуры в плоском вращающемся по инерции кольце вязкой капиллярной жидкости. Методика получения численного решения в такой постановке задачи протестирована на единственных, известных на сегодня, решениях уравнений движения и теплопроводности, полученных В.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.