Abstract

Objectives . This article explores in detail questions of instrument operation function of tapping internal threads in hard materials. The existing relationship between vibration system amplitude and tool durability is indicated; on this basis, it is determined that the best course for improving the durability performance is increasing vibratory resistance. Based on a critical analysis of existing designs with consideration of their flaws, the development of new technological designs of taps is tasked with ensuring stable operation when handling hard materials. Methods. It is noteworthy that one of the main vibration resistance improvement methods of the tool is to reduce the contact area of the tool with the work piece in the cutting zone. Methods are proposed for improving the vibration resistance of taps, considering the correlation adjustment of tap teeth in order to completely eliminate friction at the sides of the thread cutting surface and uneven implementation flute cutting steps. Results . The idea of increasing vibration resistance has seen the new development of vibration-proof tap designs, heralded as innovations due to the accuracy of thread cutting and durability achieved by reducing the thread contact area with the work piece in the cutting zone. Increased vibration resistance is achieved in the modified taps through high correction by means of thread side downgrading of the coarse tap cone by an additional angle of 30o. In another design, the stylus provided with uneven angular spacing. Test results of designed taps machined in corrosion-resistant 1Kh18N9T steel. A manifold increase in tool durability was achieved due to its high vibration resistance. Conclusions. The redesigned taps have a number of advantages, characterised by a high resistance when processing difficult materials and an insignificant increase in the complexity of their manufacture compared with standard taps. Therefore they can be recommended for large-scale implementation in production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call