Abstract
Abstract This paper reports a localization method of a mobile robot using ceiling image. The ceiling has landmarks which are not distinguishablefrom one another. The location of every landmark in a map is given a priori while correspondence is not given between a detected landmark and a landmark in the map. Only the initial pose of the robot relative to the landmarks is given. The method uses particle filter approach for localization. Along with estimating robot pose, the method also associates a landmark in the map to a landmark detected from the ceiling image. The method is tested in an indoor environment which has circular landmarks on the ceiling. The test verifies the feasibility of the method in an environment where range data to walls or to beacons are not available or severely corrupted with noise. This method is useful for localization in a warehouse where measurement by Laser range finder and range data to beacons of RF or ultrasonic signal have large uncertainty.Key Words : Mobile Robot, Pose Estimation, Ceiling Image, Undistinguishable Landmarks, Particle Filter, Correspondence.이 논문은 2015학년도 조선대학교 학술연구비의 지원을 받아 연구되었음(This study was supported by research fund from Chosun University, 2015)This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Korean Institute of Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.