Abstract

Adsorption and desorption of the herbicide atrazine was investigated on the principal inorganic constituents of soil, as well as on a typical Greek soil sample. The studies were conducted both in batch, stirred reactors and in packed beds. Silica-gel (SiO2), γ-alumina (Al2O3) and calcite (CaCO3), were selected as model inorganic substances. Humic acid was selected as a model substance representative of the organic part of soil. Significant adsorption of atrazine was measured on the humic acid, silica and on the soil suspensions in electrolyte solutions. Atrazine exhibited higher affinity for humic acid rather than for silica. Atrazine did not adsorb on γ-alumina and on CaCO3 regardless the experimental conditions (pH range or total solid available for adsorption). In all cases, kinetic results have shown two distinct features: a first, fast sorption step, followed by a second, slow step. The kinetics data of atrazine uptake on both substrates yielded satisfactory fit to the Elovich model. Atrazine was found to be completely desorbed from both the humic acid and the silica substrates. Adsorption isotherms for atrazine were obtained at different values of ionic strength, pH and temperature. The adsorption data gave the best fit to the Freundlich model. In all cases investigated, the amount of adsorbed atrazine increased upon increasing the ionic strength of the solution. The adsorption of atrazine decreased with increasing solution pH. The adsorption of atrazine on silica was primarily dominated by the formation of hydrogen bonds with the surface hydroxyl groups. In the case of humic acid, the diffusion of atrazine to the interior of the solid seemed to play the most significant role. Inside the organic substance particles, sorption took place mainly through hydrophobic interactions. The sorption of atrazine on silica surface increased considerably with increasing temperature, a trend not found in the case of humic acid. The thermodynamic analysis yielded adsorption energy values of the order of 10 kJ mol-1 suggesting physical adsorption. The isotherms obtained from the packed bed experiments were in a good agreement with those obtained from batch experiments. Finally, humic acid grains, mixed with silica in packed beds, were found to change morphology upon hydration which resulted to swelling. The humic substances clogged a large portion of the pores of the packed beds, decreasing drastically their permeability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call