Abstract

In this paper has been considered the process for simulation of technology for layer-by-layer deformation of sheet bars. In process describing the use of surface models is not desirable for reasons of design and technology, so as for each layer’s surface description its necessary to convert the original surface’s skeleton taking into account the layer thickness change, that leads to processed information’s volume increasing. To solve this problem has been used a perspective method of parametric solid-state simulation for description of sheet bar’s geometry and simulation process. This method has allowed describe a body of multi-layer construction, taking into account special features of sheet material’s layer-by-layer deformation technology. Considered model for assignment of shape and multi-layer structure made it possible to describe the process for formation of the designed shape from flat blank to finished sheet bar’s shape. In such a case, there is no operation for resetting of sought skeleton for interlayer surface. Basic program modules have been developed to describe the process for layer-by-layer deformation in MathCAD. The main program for process description includes the following modules: module for description of parametric solid-state model; module for description of the spinning tool’s motion trajectory; module for calculation of deformation process parameters; module for definition of deformation surface by rounded edges in the specified layer. The developed program complex was probated during manufacture of a detail with pyramidal shape. To implement the layer-by-layer deformation was used a CNC machine. The quoted results of theoretical and experimental researches on the example of manufacturing the pyramidal detail from sheet material have demonstrated that the use of such a form of description for multi-layer construction as parametric solid-state model has a positive impact on the obtaining detail’s surface quality improving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.