Abstract
The impact of land and ocean initial condition on coupled general circulation model seasonal predictability is assessed in this study. The CGCM used here is Pusan National University Couple General Circulation Model (PNU CGCM). The seasonal predictability of the surface air temperature and ocean potential temperature for boreal winter are evaluated with 4 different experiments which are combinations of 2 types of land initial conditions (AMI and CMI) and 2 types of ocean initial conditions (DA and noDA). EXP1 is the experiment using climatological land initial condition and ocean initial condition to which the data assimilation technique is not applied. EXP2 is same with EXP1 but used ocean data assimilation applied ocean initial condition. EXP3 is same with EXP1 but AMIP-type land initial condition is used for this experiment. EXP4 is the experiment using the AMIP-type land initial condition and data assimilated ocean initial condition. By comparing these 4 experiments, it is revealed that the impact of data assimilated ocean initial is dominant compared to AMIP-type land initial condition for seasonal predictability of CGCM. The spatial and temporal patterns of EXP2 and EXP4 to which the data assimilation technique is applied were improved compared to the others (EXP1 and EXP3) in boreal winter 2m temperature and sea surface temperature prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.