Abstract

As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.