Abstract

A plane wave is scattered by an acoustically soft, hard or penetrable sphere, covered by a penetrable non-concentric spherical lossless shell which disturbs the propagation of the incident plane wave field. There is exactly one bispherical coordinate system that fits the given two-sphere obstacle. If the wavelength of the incident field is much larger than the radius of the exterior sphere, Low Frequency Theory reduces the scattering problem to a sequence of potential problems which can be solved iteratively Applying the corresponding boundary value problem for each case, a set of two equations results as well as a recurrence equation with three unknown sequence of coefficients for zero-th order, and the first-order approximation is obtained, by solving two sets of two equations and a recurrence equation with three unknown sequence coefficients each for the soft core or the calculation of the zero–th order coefficients of the hard or penetrable core, leads to a solution of a linear system of two equations with two unknown columns and tri-diagonal square matrices are coefficients of the unknown columns, while the first-order approximation is obtained, by solving two linear systems of two equations with four unknown columns and eight tri-diagonal matrices as coefficients of the unknown columns. Applying the cut-off method for soft, hard and penetrable sphere, the low-frequency coefficients of the zero-th and first-order for the near field as well as the first and second-order coefficients are obtained for the normalized scattering amplitude and cross section. Decreasing the distance d of the centres we conclude that the problem of scattering concentric cell cannot be considered special case of mentioned before problem. A plane wave is scattered by an acoustical soft acoustic sphere embedded into an acoustically lossless half space, which disturbs the propagation of the incident wave field. In the first step, the problem of sound diffraction by only a penetrable plane is solved, were the amplitudes of reflective and diffractive acoustical waves are calculated. In the second step the diffractive as an incident wave is scattered by the embedded acoustical soft sphere. The low frequency zero-th and first order coefficients of the near field are calculated for the soft scatterer and finally the scattering amplitude and cross-section are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call