Abstract

This study was carried out to investigate the influence of different planting time on the synthesis of isoflavone in black soybean, Three varieties used in this experiment were lpumgeomjeongkong, Cheongjakong and Heugcheongkong which had different ecotypes, repectively. Seeds were sown at different time, May 15th, May 30th and June 15th with planting density of 60x15cm. In order to analyze the content of isoflavone, we collected sample every 5 days from 30 days after flowering to harvest and analyzed them with UPLC. As sowing was delayed, the content of isoflavone increased in all of three varieties. The content of genistein was greater than daidzein and glycitein. Increase of Glycitein was not distinct from 55 days after flowering(DAF) and it was stable against temperature change during the seed developing period. Although the content of genistein in Ilpumgeomjeongkong from 50 to 55 DAF, in Cheongjakong from 40 to 55 DAF and in Heugcheongkong from 60 to 65 DAF was lower than the content of daidzein, it was higher than that of daidzein afterward. In the statistical analysis on the relationship between average temperature and the content of aglycone isoflavone at 5-day intervals from 30 DAF during the grain filling period, genistein in Ilpumgeomjeongkong showed meaningful correlation as y=-15.28x+407.9 (R 2 =0.505*), diadzein in Cheongjakong showed meaningful correlation as y=-6.188x-164.5(R 2 =0.454*), and genistein showed significantly high correlation as y=-11.59x+297.6 (R 2 =0.545**). Taking all the above results into consideration, it was suggested that the regions suitable for high content of isoflavone in black soybean be the northern area of Gyeonggi-do and Gangwon-do, Chungcheongbuk-do and inland area of Gyeongsangbuk-do, where are relatively low average temperature from flowering stage(R 2 ) during the grain filling period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call