Abstract
In recent practice a half round prismatic bar has fillet welded or formed through foundry work along the centerline on rear concave surface of the horn to mitigate gap flow between fixed and movable part of the rudder system. When the gap clearance has been blocked with this practice, numerical simulations indicate that the practices are not only effective in reducing the gap flow but also in mitigating the cavitation. The blocking effects are remarkably improved when a pair of blocking bar is bisymmetrically attached with respect to centerline on the opposite convex surface of the movable part. The blocking bar could be placed on the exposed surface under maximum rudder angle. This implies that the blocking bar could be easily adopted not only in a design stage but also in a maintenance stage for mitigating rudder cavitation. In addition, the numerical simulations imply that more improvements could be anticipated through the selection of section shape of prismatic bar for gap flow blocking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Society of Naval Architects of Korea
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.