Abstract
We obtain a representation of the solution to the Cauchy problem for the $r$-th order difference equation with constant coefficients and given initial conditions at the point $x=0$. This representation is based on the expansion of the solution in the Fourier series by polynomials that are orthogonal in the sense of Sobolev on the grid $\{0, 1, \ldots\}$ and generated by the classical Meixner polynomials. In addition, an algorithm for numerical finding of the unknown coefficients in this expansion has been developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.