Abstract

The authors discuss the effect of hydraulic conductivity on the suction profile and stability of a typical cut-slope subjected to low intensity rainfall. The initial suction value above the ground table in the unsaturated zone is assumed to be 15 kPa. The uncoupled approach of finite element and limit equilibrium method is used to evaluate the stability of the cut-slope at different elapsed times of rainfall. The finite element seepage analysis shows that the soil in the unsaturated zone always remains unsaturated during the course of low intensity rainfall. Furthermore, the slope stability remains practically unchanged so long as the wetting front remains in the unsaturated zone but it decreases noticeably when the wetting front reaches and elevates the ground water table level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call