Abstract

The effect of Electrochemical Promotion of Catalysis (EPOC or NEMCA effect) is a phenomenon where application of small currents or potentials (±2 V) alters the activity and selectivity of catalysts supported on ionic or mixed ionic-electronic conductors and modifies the electronic and thus catalytic properties in a controllable, reversible and to some extent predictable manner. The effect of catalyst film thickness on the magnitude of electrochemical promotion (ρ and Λ values) has not been studied experimentally so far but a mathematical model has been developed, accounting for surface diffusion and reaction of the promoting species, which predicts a strong variation of ρ and Λ with catalyst film thickness L. In the present thesis is examined for the first time experimentally the effect of catalyst film thickness on the magnitude of the EPOC, using porous Pt catalyst-electrodes prepared from Engelhard Pt paste with thicknesses in the range 0.2 to 1.4 μm. It was found that increasing the thickness of porous catalyst films used in electrochemical promotion studies causes a decrease in the rate enhancement ratio, ρ, due to the gradual axial decrease from the three-phase-boundaries to the top of the film of the surface concentration of the promoting backspillover O2- species which diffuse and react on the porous catalyst surface. Increasing film thickness causes a moderate increase in the Faradaic efficiency, Λ, which can be predicted by the parameter 2Fro/I0. The ρ and Λ behaviour is in good agreement with the analytical model prediction and provides additional support for the O2- promoter reaction-diffusion model and for the sacrificial promoter mechanism of electrochemical promotion. Most electrochemical promotion studies have been carried out so far with thick (0.1 μm to 5 μm) porous metal catalyst films with a roughness factor of the order of 500 and small (typically less than 0.1%) metal dispersion, deposited on solid electrolytes using a variety of deposition techniques. Very recently, electropromotion studies have been extended to thin (40 nm) sputter coated porous metal catalysts with metal dispersion of the order of 10 to 30%. The effect of thickness with such thin (30 to 90 nm) sputtered Pt catalyst-electrodes on the magnitude of electrochemical promotion is discussed, as well as the effect of the catalyst deposition method (Sputtering, Pulsed Laser Deposition and Vapor Deposition) using the model reaction of ethylene oxidation. Rate enhancement ratio, ρ, values up to 440 and Λ values up to 1000 where obtained for the sputtered films, in agreement with the sacrificial promoter and diffusion-reaction models of EPOC which predict increase in ρ value with thinner films. An environmental interest reaction, the reduction of NO by ethylene in the presence of excess oxygen, was investigated in a recently developed MEPR. In this novel dismantlable monolithic-type electrochemically promoted catalytic reactor, thin (~40 nm) porous catalyst films are sputter-deposited on thin (0.25 mm) parallel solid electrolyte plates supported in the grooves of a ceramic monolithic holder and serve as electropromoted catalyst elements. Using Pt-Rh(1:1)/YSZ/Au-type catalyst elements, the 8-plate reactor operated with apparent Faradaic efficiency exceeding unity achieving significant and reversible enhancement in the rates of C2H4 and NO consumption in presence of up to 10% O2 in the feed at gas flow rates up to 1000 cc/min. The Pt-Rh co-sputtered films exhibited very good performance in terms of stability and selectivity for N2 formation, i.e. practically 100% under all reaction conditions. The reactor, which is a hybrid between a monolithic catalytic reactor and a flat-plate solid oxide fuel cell, permits easy practical utilization of the electrochemical promotion of catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.