Abstract
Currently, flame retardant materials made from polymers with flame retardant additives are widely used. However, the thermal effects of the fire on these materials from the point of view of the release of toxic gases are not sufficiently studied. The purpose of the article is an experimental assessment of the toxicity of the gaseous environment of a room during thermal decomposition of flame retardant signal cables used in the industrial premises and in the buildings with a massive presence of people. Experimental method is used for studying the process of formation of the hydrogen cyanide and carbon monoxide during thermal decomposition of the cable product samples in a small-scale pilot plant. The analysis of the obtained results was carried out. Density of the radiant heat flux incident on the cable surface, which is characteristic of a fire in a room, is modeled. Dependences are obtained concerning the partial densities of hydrogen cyanide and carbon monoxide, as well as the specific emission coefficients of these gases on the duration of experiments in the case of thermal decomposition of a modern flame retardant signal cable of the ng LS FR HF E1180 brand, the insulation of which is made of polymers with flame retardant additives. It is found that this cable under real fire conditions can release toxic compounds (carbon monoxide and hydrogen cyanide) in the concentrations exceeding their maximum allowable values during the evacuation of people from the premises. The obtained values of the specific mass coefficients of formation of CO and HCN, as well as the specific mass coefficient of O2 absorption, can be used in the mathematical models of the dynamics of fire hazards when calculating the time of blocking escape routes in the industrial premises, as well as in the buildings with a mass stay of people, where flame retardant signal cables are located.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.