Abstract

AbstractThe results of experimental studies of combustion of propane–air gaseous mixture when it was ignited by a microwave discharge have been described. The mixture with different propane content fills a sealed radio-transparent tube placed along the axis of a focused linearly polarized quasi-optical microwave beam at atmospheric pressure. Multi-point ignition of the mixture is carried out near one end of the tube by a pulsed microwave discharge with a surface-developed streamer structure. The growth of gas pressure in the tube as propane burned was recorded in the experiments. The microwave pulse energy being invested in high-temperature discharge plasma has been estimated in them. The minimum percentage of propane in the mixture at which the microwave discharge ignites it has been determined in experiments. The time dependence of the pressure increase in the tube as the propane burns determines the combustion process dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.