Abstract

본 논문에서는 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 적합도 검정으로 기존에 개발된 엔트로피 기반 검정을 확장한 쿨백-라이블러 정보 기반 적합도 검정을 소개한다. 역가우스분포에 대한 단순 또는 복합 영가설을 검정하기 위한 4가지 형태의 검정통계량을 제시하고 검정통계량의 계산에 사용할 표본크기에 따른 윈도크기와 기각값을 모의실험을 통해 결정하여 표의 형태로 제공한다. 검정력 분석을 위해 수행한 모의실험의 결과에서 위치와 척도모수가 모두 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포와 표본크기에서 EDF 검정들보다 좋은 검정력을 가지는 것으로 나타난다. 위치모수 또는 척도모수만 알려진 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 모든 대립분포에 대해서 표본크기가 커짐에 따라 검정력이 증가하는 경향을 보인다. 위치와 척도모수가 모두 알려지지 않은 역가우스분포에 대한 쿨백-라이블러 정보 기반 적합도 검정은 대체적으로 엔트로피 기반 검정과 비슷한 수준의 검정력을 보이는 것으로 나타나고 이 결과를 통해서 두 검정은 동일함을 확인할 수 있다. The entropy-based test of fit for the inverse Gaussian distribution presented by Mudholkar and Tian(2002) can only be applied to the composite hypothesis that a sample is drawn from an inverse Gaussian distribution with both the location and scale parameters unknown. In application, however, a researcher may want a test of fit either for an inverse Gaussian distribution with one parameter known or for an inverse Gaussian distribution with both the two partameters known. In this paper, we introduce tests of fit for the inverse Gaussian distribution based on the Kullback-Leibler information as an extension of the entropy-based test. A window size should be chosen to implement the proposed tests. By means of Monte Carlo simulations, window sizes are determined for a wide range of sample sizes and the corresponding critical values of the test statistics are estimated. The results of power analysis for various alternatives report that the Kullback-Leibler information-based goodness-of-fit tests have good power.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.