Abstract

Based on the solution of the equation of motion of a charge in an electromagnetic field, the classical theory of radiation of a relativistic charged particle linearly accelerated by a high-intensity laser pulse in the presence of a static component of the magnetic field is constructed. Solutions obtained by Kopytov G.F. and Pogorelov A.V., were used to study the spectral-angular characteristics of the radiation of a charged particle in a combination of the field of a plane monochromatic electromagnetic wave and a constant magnetic field, the so-called Redmond field. According to the calculated formulas for the radiation intensity of particles in the Redmond field, graphs of the dependence on the magnitude of the magnetic field, phase and phase-angular distributions are plotted. The Fourier transform of the intensity of the electric field of the radiation and the spectral density of the radiation of the particle in the case of linear polarization of the wave is obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call