Abstract
In order to analyze the elastic-plastic fracture behavior of a structure, the fracture resistance curve of the material should be known first. The standard CT specimen was used to obtain the fracture resistance curves of a piping system. However, it is known that the fracture resistance curve by the standard CT specimen is very conservative to evaluate the integrity of a structure. Also the fracture resistance curve is effected by the specimen geometry and the dimensions because of the constraint effect. The objective of this paper is to be certain the conservativeness of the fracture resistance curve by the standard CT specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and to provide an additional safety margin. For these, the fracture tests using a real pipe specimen and the standard CT specimen test were performed. A 4-point bending jig was manufactured for the pipe test and the direct current potential drop method was used to measure the crack extension and the length for the pipe test. Also finite element analyses were performed with a CT specimen and a pipe in order to prove the additional safety margin. From the result of tests and analyses of the pipe and the standard CT specimen, it was observed that the fractrue analysis with the standard CT specimen is conservative and the additional safety margin was proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transactions of the Korean Society of Mechanical Engineers A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.