Abstract

The aim of this work is to develop approaches for a methodology creation that allows estimate preliminary assessment of the power consumption management potential in the absence of experimental data on the object under actual load study. Analysis of diesel power plants operating modes in such systems showed that diesel generators often operate in suboptimal load ranges, which leads to increased diesel fuel consumption, reduction in diesel generators service life andas a result of poor diesel fuelcombustion in the cylinders or increased mechanical parts wear, etc. At the same time, electricity demand management technology used in large centralized power supply systems in some countries of the world can be adapted for use in isolated low power systems. Considering that diesel power plants are the sources of distributed generation in the power systems of hard-to-reach facilities in mountainous areas, demand management will allow to align the daily load schedule, plan the loading, start-ups and stops of diesel generators to improve the technical, economic and environmental performance of the entire complex. This paper proposes a technique that allows estimate preliminary assessment of the object shiftable electrical load share on the basis of "base" data about a typical similar object. The initial data isthe average electrical load daily schedules for each month of the studied object, for example, a settlement. The schedule of non-shiftable partof the studied object load is constructed by scaling the base non-shiftable load schedule depending on the selected method: the series values of base schedule can be multiplied by a coefficient so that one of the base schedule values becomes equal to the corresponding series value of the studied object load schedule, and other base schedule values were less than or equal to the corresponding values. According to the second method the base schedule values can be multiplied by a coefficient so that the series values at the selected hour (for example, evening maximum) were equal to the corresponding series value of the studied object load schedule. An example of methodology application is shown to estimate the demand response potential for electricity in the Amderma settlementresidential sector in Arkhangelsk region. It also shows the calculation results of technical, economic and environmental effect of the demand side management technology, due to electric load schedule alignment and, as a result, diesel generators operationin modes close to optimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call