Abstract
Electromagnetic and thermal phenomena on multistrand cables are studied for the purpose of large-scale applications, e.g., fusion machines and SMES. The conductors in these machines (generally cable in conduit conductors [CICCs]) must be designed to aim at a reduction of interstrand coupling loss and promotion of current redistribution ability in the normal generation. So far, most analytical studies have been carried out for single-stage twisted cable or multiplestage twisted cable with insulation among strands, and current redistribution phenomena have been revealed well. In this study, we evaluated both minimum quench energies (MQEs) and recovery current of multistrand cables without insulation among strands by numerically solving the electric circuit and thermal equations. The validity of segregated copper strands to enhance the stability in the multistrand cable was also evaluated. The results show that the MQE is not improved, but the recovery current becomes larger when segregated coppers are added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.