Abstract

For a missile with a strapdown seeker, line-of-sight rate for guidance is obtained by compensating the look angle rate from the strapdown seeker by the body angular rate from rate gyros. However, the body angular rate from rate gyros has different signal properties when it compared to the body angular rate implicitly included in the look angle rate. Typically this discrepancy causes instability of homing loop. In this paper, we propose a design method of homing loop where seeker delay is compulsively placed in the output signal of the rate gyros for accordance of both body rates. Also, PID control loop is considered for obtaining stabilized guidance command even though uncertainties of seeker delay is associated. The stability analysis for the linear homing loop before and after the compensation has been done. The stability and performance of the designed terminal homing loop is verified through full nonlinear 6-DOF simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call