Abstract
An enhancement of the probabilistic data association filter is presented for tracking a single maneuvering target in clutter environment. The use of the variable dimensional structure leads the probabilistic data association filter to adjust to real motion of a target. The detection of the maneuver for the model switching is performed by the acceleration estimates taken from a bias estimator of the two stage Kalman filter. The proposed algorithm needs low computational power since it is implemented with a single filtering procedure. A simple Monte Carlo simulation was performed to compare the performance of the proposed algorithm and the IMMPDA filter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Control, Automation and Systems Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.