Abstract
This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Institute of Control, Robotics and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.